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Abstract

The simple cosine function used in the formulation of
the traditional minimal principle and the related Shake-
and-Bake algorithm is here replaced by a function of
exponential type and its expected value and variance are
derived. These lead to the corresponding exponential
minimal principle and its associated Exponential Shake-
and-Bake algorithm. Recent applications of the expo-
nential function to several protein structures within the
Shake-and-Bake framework suggest that this function
leads, in general, to signi®cant improvements in the
success rate (percentage of trial structures yielding
solution) of the Shake-and-Bake procedure. However,
only in space group P1 is it presently possible to assign
optimal values a priori for the exponential-function
parameters.

1. Introduction

The minimal principle, which formulates the phase
problem as one of constrained global minimization, was
®rst clearly formulated in 1994 (DeTitta et al., 1994).
This principle is the theoretical basis for the Shake-and-
Bake algorithm (Weeks, DeTitta et al., 1994), which, by
alternating phase re®nement in reciprocal space with a
peak-picking protocol in real space (thus imposing the
constraints), has greatly strengthened the traditional
techniques of direct methods. During the phase-re®ne-
ment step, Shake-and-Bake typically employs a par-
ameter-shift optimization strategy (Bhuiya & Stanley,
1963) to reduce the value of the cosine minimal function
(Debaerdemaeker & Woolfson, 1983; Hauptman, 1991;
DeTitta et al., 1994). A variant of this paradigm, alter-
nating tangent re®nement (Karle & Hauptman, 1956) in
reciprocal space with a peak list optimization technique
in real space, and termed half-baked, or SHELX-D, has
been proposed by Sheldrick & Gould (1995). These
advances have rendered routine the solution of the
phase problem for structures containing as many as 1000
independent non-H atoms in the unit cell, provided that
diffraction data to a resolution of 1.2 AÊ , at least, are
available. Their ultimate potential is still unknown.

Our major goal here is to replace the original minimal
function, based on the simple cosine, by one of expo-
nential type, in an effort to improve the performance of

Shake-and-Bake. The traditional minimal principle and
the related Shake-and-Bake algorithm are replaced by
the exponential minimal principle and its associated
Exponential Shake-and-Bake algorithm. Recent appli-
cations of the exponential minimal function to several
protein structures within the Shake-and-Bake frame-
work show that Exponential Shake-and-Bake has the
potential, in general, to reduce the time to solution,
when compared with traditional Shake-and-Bake, by a
factor of two or three. The time to solution, however,
depends not only on the nature of the minimal function
itself but also on the value of the shift angle used in the
phase-re®nement half of the Shake-and-Bake cycle.
Therefore, in order to realize the full potential of
Exponential Shake-and-Bake, it is necessary to deter-
mine, prior to structure solution, the best value for the
shift angle. A procedure for calculating the optimal
value of this shift has been devised only for the space
group P1. Thus the improvement that Exponential
Shake-and-Bake promises has so far been realized only
for this space group.

2. The probabilistic background

By its heavy dependence on the previous work of
DeTitta et al. (1994), the present analysis is greatly
abbreviated. If H is an arbitrary reciprocal-lattice
vector, then the normalized structure factor EH is
de®ned by

EH � jEHj exp�i'H� � Nÿ1=2
PN
j�1

exp�2�iH � rj�; �1�

where N is the number of atoms, here assumed for
simplicity to be identical, in the unit cell, and rj is the
position vector of the atom labeled j. For every pair of
reciprocal-lattice vectors (H, K), the structure invariant
(triplet) 'HK is de®ned by

'HK � 'H � 'K � 'ÿHÿK: �2�
It is assumed that the atomic position vectors rj are
random variables which are uniformly and indepen-
dently distributed in the asymmetric unit. Then, for ®xed
reciprocal-lattice vectors (H, K), the triplet 'HK [equa-
tion (2)], as a function [equation (1)] of the primitive
random variables rj, is itself a random variable. The
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conditional probability distribution, P��jAHK�, of the
triplet 'HK, given the three magnitudes

jEHj; jEKj; jEH�Kj; �3�
is known to be

P��jAHK� � �1=2�I0�AHK�� exp�AHK cos ��; �4�
where � represents the triplet 'HK,

AHK � �2=N1=2�jEHEKEH�Kj �5�
and I0 is the modi®ed Bessel function (Cochran, 1955).

3. Traditional Shake-and-Bake

3.1. The expected value and variance

From the distribution (4), the conditional expected
value and the conditional variance of cos�'HK�, given
AHK, are readily found (e.g. DeTitta et al., 1994):

"�cos�'HK�jAHK� �
I1�AHK�
I0�AHK�

�6�

and

var�cos�'HK�jAHK� � 1
2�

I2�AHK�
2I0�AHK�

ÿ I2
1 �AHK�

I2
0 �AHK�

; �7�

where I0, I1 and I2 are modi®ed Bessel functions.

3.2. The minimal function and the minimal principle

Since, as is readily con®rmed, AHK is strongly corre-
lated with the reciprocal of the variance [equation (7)],
one de®nes the minimal function, R('), a function of the
phases in view of equation (2), by means of

R�'� �
�X

H;K

AHK

�ÿ1 X
H;K

AHK

�
cos 'HK ÿ

I1�AHK�
I0�AHK�

�2

�8�
and conjectures, in view of equations (6) and (7), that
the constrained global minimum of R(') yields the
values of the individual phases for some choice of origin
and enantiomorph (the minimal principle). Owing to the
existence of identities among the individual phases, we
seek the `constrained' global minimum of R('), not the
unconstrained global minimum; this is an essential
distinction that Shake-and-Bake exploits.

Although the inverse of the variance, varÿ1 [equation
(7)], could be used instead of A as the weight in equation
(8), this substitution does not improve the performance
of Shake-and-Bake. For this reason, the A values are
used as weights in equation (8) rather than the more
complicated varÿ1 values.

3.3. The constrained global minimum, RT, of R(')

In view of equation (4), it is readily con®rmed (e.g.
DeTitta et al., 1994) that when the phases are set equal

to their true values, then, no matter what the choice of
origin or enantiomorph, the value RT of R(') becomes

RT � 1
2�

�X
H;K

AHK

�ÿ1 X
H;K

AHK

�
I2�AHK�

2I0�AHK�
ÿ I2

1 �AHK�
I2

0 �AHK�
�

< 1
2; �9�

which clearly is the constrained global minimum of R(').

3.4. The value, RR, of R(') when the phases are chosen at
random

In this case, it is easily seen, as reference to equation
(8) shows, that

RR � 1
2�

�X
H;K

AHK

�ÿ1 X
H;K

AHK

I2
1 �AHK�

I2
0 �AHK�

> 1
2: �10�

3.5. The discriminant D

From equations (9) and (10), we conclude that

RT <
1
2<RR: �11�

Equation (5) shows that, as N increases inde®nitely, A
values tend to become very small, so that, in view of
equation (9), RT approaches 1

2 from below. Similarly,
with increasing N, RR approaches 1

2 from above. It
follows that, as N becomes very large, the value of the
discriminant D, de®ned by

D � RT=RR < 1; �12�
approaches unity. In this case, since the constrained
global minimum RT of R(') approaches RR, one antici-
pates that structural solution will become more dif®cult
and computer intensive. Of course this is simply another
way of saying that more complex structures are harder
to solve than less complex ones and justi®es regarding D
as a measure of the dif®culty of structural solution: as D
approaches unity, structural solution becomes more
dif®cult and time consuming.

4. Exponential Shake-and-Bake

We proceed as in the previous section but replace the
simple cosine by the exponential

g�'HK� � exp��AHK cos � cos�'HK � ���; �13�
dependent on the parameters � and � (as well as on
AHK).

4.1. The expected value gHK of g('HK)

Referring to equation (4), we ®nd the conditional
expected value of g('HK) given AHK:
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gHK � "�g�'HK�jAHK�

� �1=2�I0�AHK��
R2�
0

exp��AHK cos � cos��� ��

� AHK cos �� d� �14�

� �1=2�I0�AHK��
R2�
0

exp�AHKX cos��� ��� d�;

�15�
where

X � ��2 cos2 �� 2� cos2 �� 1�1=2

� ����� 2� cos2 �� 1�1=2 �16�
and � is independent of �. Then the integration of (15) is
immediate:

gHK � �1=I0�AHK��I0fAHK����� 2� cos2 �� 1�1=2g:
�17�

4.2. The variance of g('HK)

Replacing � by 2� in equation (17), we ®nd the
conditional expected value g2

HK of the square of g('HK)
given AHK:

g2
HK � "�g2�'HK�jAHK�
� �1=I0�AHK��I0fAHK�4���� 1� cos2 �� 1�1=2g:

�18�
Hence the variance of g('HK) is given by

var�g�'HK�jAHK� � g2
HK ÿ gHK

2: �19�
The `weight' WHK is de®ned to be the reciprocal of the
variance:

WHK � fvar�g�'HK�jAHK�gÿ1: �20�

4.3. The exponential minimal principle

In complete analogy to the traditional minimal prin-
ciple, one now de®nes the exponential minimal function
m(') by means of

m�'� �
� P

H;K

WHK

�ÿ1 P
H;K

WHK�g�'HK� ÿ gHK�2; �21�

where gHK and WHK are de®ned by equations (17) and
(20), respectively, and conjectures that the constrained
global minimum of m(') yields the true values of the
phases for some choice of origin and enantiomorph (the
exponential minimal principle).

4.4. The constrained global minimum mT of m(')

Again, in exact analogy to the derivation of equation
(9), we now ®nd the value mT of m(') when all phases
are equal to their true values for any choice of origin and
enantiomorph:

mT �
� P

H;K

WHK

�ÿ1 P
H;K

WHK�g2
HK ÿ gHK

2�; �22�

which, in view of equations (19) and (20), becomes
simply

mT �
� P

H;K

WHK

�ÿ1 P
H;K

1; �23�

which is clearly the constrained global minimum of
m(').

4.5. The value mR of m(') when the phases are chosen at
random

As in the derivation of equation (10), we now ®nd

mR �
� P

H;K

WHK

�ÿ1 P
H;K

WHK�gHK
2

ÿ 2I0��AHK cos ��gHK � I0�2�AHK cos ���:
�24�

4.6. The exponential discriminant �

In analogy to equation (12), we now de®ne the
exponential discriminant � by means of

� � mT=mR �25�
and infer, from the de®nitions of mT and mR, that

0<�< 1: �26�
Furthermore, as with traditional Shake-and-Bake, � is a
measure of the ease of structural solution: the smaller
the value of �, the easier it is to solve the structure.

5. Materials and methods

Both the cosine minimal function and the exponential
minimal function were applied to the series of known
structures listed in Table 1 using version 2 of SnB
(Weeks & Miller, 1999a), a computer program that
implements Shake-and-Bake. Atomic resolution data
sets were available for these structures, which range in
size from 74 to 1000 non-H protein atoms in the asym-
metric unit and crystallize in space groups P1, P21 and
P212121. A sample of 1000 (for small structures) or 500
(for large structures) randomly positioned n-atom trial
structures (where n is the number of non-H atoms in the
asymmetric unit) was generated for each data set. For
each structure, an atom:phase:triplet ratio of approxi-
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mately 1:10:100 was used in the Shake-and-Bake
procedure. Values of the basic parameters (i.e. the
numbers of phases, triplet invariants, peaks and re®ne-
ment cycles), which are all dependent on structure size
(Weeks & Miller, 1999b), are summarized in Table 2.

The notations COS(S, m, k) and EXP(S, m, k) are
used to denote parameter-shift optimization of the
cosine or exponential minimal functions, respectively,
using shift size S, a maximum of m steps, and k iterations
(passes through the phase set per Shake-and-Bake
cycle). The notation PS(90�, 2) denotes the default
parameter-shift conditions (i.e. the cosine minimal
function with a 90� shift size, a maximum of 2 shifts, and
1 iteration for P1 structures or 3 iterations for non-P1
structures) normally employed in the SnB program.
These conditions were based on a series of previous
studies using data sets for known small-molecule struc-
tures (Weeks, Hauptman et al., 1994; Chang et al., 1997).
In a recent application of the Shake-and-Bake proce-
dure to triclinic lysozyme (Deacon et al., 1998), it was
shown that a single large shift of 157.5� produced the
best results. Consequently, in this study the cosine
minimal function was applied using not only the default
conditions [PS(90�, 2)], but also a series of single shifts
[COS(S, 1, 1)] with S = 22.5, 45, 67.5, 90, 112.5, 135, 157.5
and 180�, in an effort to ®nd the optimal conditions.

In the case of the exponential minimal function
[EXP(S, 1, 1)], it is necessary to optimize the parameter-
shift angle based on some choice of the parameters �
and �. The determination of � was based on the infor-
mation presented in Fig. 1. Fig. 1(a) shows success-rate
curves for various shift sizes S while � was ®xed, and Fig.
1(b) shows success-rate curves for various values of �
while shift size S was ®xed. It is clear that the optimal
value of � is between 0 and 40�. Thus, the default value
of � was set to 20� in an effort to minimize the amount of
computation in the investigation.

The exponential minimal function depends on
I0fAHK�4���� 1� cos2 �� 1�1=2g, the modi®ed Bessel
function. Since the I0 function has an exponential
growth rate, one must carefully consider the value of its
argument. Assuming that the maximum value of the
argument is Xmax, then

AHK�4���� 1� cos2 �� 1�1=2 � j2�� 1jAmax � Xmax;

�27�
where Amax � maxH;KAHK. It follows that

Fig. 1. Success rates of the exponential minimal function as a function
of parameter � for emerimycin.

Table 1. Test data sets used in this investigation

Structure Number of atoms Space group Resolution (AÊ ) Reference

Emerimycin 74 P1 0.91 Marshall et al. (1990)
Isoleucinomycin 84 P212121 0.94 Pletnev et al. (1980)
Enkephalin analog 96 P1 0.83 Krstenansky (unpublished)
Ternatin 104 P212121 0.94 Miller et al. (1993)
Hexaisoleucinomycin 113 P212121 1.00 Pletnev et al. (1992)
Gramicidin A 317 P212121 0.86 Langs (1988)
Crambin 327 P21 0.83 Hendrickson & Teeter (1981)
Triclinic vancomycin 404 P1 0.97 Loll et al. (1997)
Alpha-1 peptide 408 P1 0.90 PriveÂ et al. (1999)
Scorpion toxin II 508 P212121 0.96 Smith et al. (1997)
Triclinic lysozyme 1001 P1 0.85 Deacon et al. (1998)
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ÿ1
2�1� Xmax=Amax� � � � 1

2�ÿ1� Xmax=Amax�: �28�
Since � cannot equal 0 [otherwise equation (21)
degenerates to zero], the range of � is

ÿ1
2�1� Xmax=Amax� � �< 0 �29�

and

0<� � 1
2�ÿ1� Xmax=Amax�: �30�

On a Silicon Graphics R10000 Indigo workstation, using
Fortran77 and storing the result of the computation as a
real data type, Xmax must be bounded by the value 88.0
in order to avoid over¯ow. The information presented in
Fig. 2 clearly indicates that the optimal value of � should
be negative. The allowable ranges of � for various data
sets are shown in Table 3.

In this study, alternative computational procedures
are compared on the basis of two criteria. When
performing post mortem studies using data for
previously known structures, a trial structure subjected
to the Shake-and-Bake procedure is counted as a solu-
tion if there is a close match between the peak positions
produced by Shake-and-Bake and the true atomic

positions for some choice of origin and enantiomorph.
Of course, in actual applications to unknown structures,
potential solutions are identi®ed on the basis of minimal
function values. The success rate is de®ned as the
percentage of trial structures that go to solution, and the
measurement of success rates at the end of a ®xed
number of cycles provides one important indication as
to the quality of a particular re®nement method.
However, this measurement by itself provides an
incomplete comparison since it does not take into
account the computational effort (running time) needed
to produce the solutions. The relative ef®ciency of two
methods can be compared as a function of cycle on the
basis of the cost effectiveness (CE),

CE � 3600B=TCt; �31�
where T is the number of trial structures, C is the
number of cycles per trial structure, B is the number of
solutions produced by T such trials, and t is the running
time (in s) for one cycle of one trial. In this commu-
nication, CE has units of solutions per hour on a Silicon
Graphics R10000 Indigo workstation. All experiments
were conducted either on a network of SGI R10000
workstations at the Hauptman±Woodward Medical
Research Institute, on an IBM SP2 at the Cornell
Theory Center (CTC), or on an IBM SP2 at the Center
for Computational Science and Technology (CCST) at
Argonne National Laboratory.

Fig. 2. Success rates of the exponential minimal function as a function
of parameter � for emerimycin.

Table 2. Values of experimental parameters

Structure Phases Triplets Peaks Cycles Trials

Emerimycin 740 7400 74 50 1000
Isoleucinomycin 840 8400 84 100 1000
Enkephalin analog 960 9600 96 100 1000
Ternatin 1040 10400 84 100 1000
Hexaisoleucinomycin 1130 11300 90 125 1000
Gramicidin A 3000 30000 200 300 500
Crambin 3000 30000 100 300 500
Triclinic vancomycin 4000 40000 150 500 500
Alpha-1 peptide 4000 40000 300 500 500
Scorpion toxin II 5000 50000 200 500 500
Triclinic lysozyme 11100 111000 350 750 500

Table 3. The range of � from (29) when Xmax = 88

Structure Amax Range of �

Emerimycin 4.70 (ÿ9.8, 0)
Isoleucinomycin 3.42 (ÿ13.3, 0)
Enkephalin analog 3.81 (ÿ12.0, 0)
Ternatin 4.16 (ÿ11.0, 0)
Hexaisoleucinomycin 4.10 (ÿ11.2, 0)
Gramicidin A 5.64 (ÿ8.3, 0)
Crambin 2.26 (ÿ20.0, 0)
Triclinic vancomycin 2.34 (ÿ19.3, 0)
Alpha-1 peptide 3.74 (ÿ12.2, 0)
Scorpion toxin II 1.32 (ÿ33.8, 0)
Triclinic lysozyme 2.34 (ÿ19.3, 0)
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6. Results

6.1. Traditional cosine minimal function

Table 4 summaries the Shake-and-Bake success rates
of the traditional cosine minimal function, COS(S, 1, 1),
for various parameter-shift angles. This table provides a
basis for comparing the results of the cosine minimal
function with those of the exponential minimal function.
It can be observed that when the cosine minimal func-
tion is employed with a single shift in the phase-re®ne-
ment procedure, S = 90� is the optimal (or nearly
optimal) parameter-shift size for small structures
(emerimycin, isoleucinomycin and enkephalin analog),
S = 112.5� is the optimal shift for medium structures
(ternatin, hexaisoleucinomycin, gramicidin A, crambin,
triclinic vancomycin and alpha-1 peptide) and S = 157.5�

is the optimal shift for the largest structure (triclinic
lysozyme). In several cases, the success rate for the
optimal single shift signi®cantly exceeds that for the
default double 90� shift, which appears to be best suited
for smaller structures.

6.2. Exponential minimal function

Fig. 3 illustrates success rate as a function of par-
ameter-shift size S when the exponential minimal func-
tion is employed in the phase-re®nement procedure. The
family of curves presented for four structures in space
group P1 (triclinic vancomycin was omitted because of
its very low success rate) shows the results for various
values of � chosen from Table 3. It can be observed from
Fig. 3 that:

(a) the optimal parameter-shift size (which leads to
the highest success rate) increases when � decreases;

(b) the sharpness of the success-rate curves depends
on the selection of � (i.e. the more negative the value of
�, the sharper the success-rate curve);

(c) the highest success rate of each structure occurs
when � is near the middle point of the interval given in
Table 3;

(d) appropriate choices of the parameter-shift size S
and the � value are critical for achieving an optimal
success rate;

Fig. 3. Success rates of the exponential minimal function as a function of shift size for several P1 structures.
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(e) replacing the cosine minimal function with the
exponential minimal function in the parameter-shift
phase-re®nement procedure leads, in general, to
signi®cant improvements in the success rate of the
Shake-and-Bake procedure for structures in space group
P1, provided that appropriate choices of �, � and the
parameter-shift size S are made.

Table 5 summarizes the exponential minimal function
success rates of four P1 structures obtained using
various parameter-shift angles and optimal values of
parameter � near the midpoint of its range for each
structure. Based on the information presented in Fig. 3
and Table 5, the following optimal parameters can be
suggested for the exponential minimal function:

� ' 20�; �32�
� ' ÿ1

4�1� Xmax=Amax�; �33�
S ' 47:8� 17:3 ln�n�; �34�

where n is the number of independent non-H protein
atoms. Equation (34) is derived from the least-squares
method using the relationship between the optimal
parameter-shift size (indicated by an asterisk in Table 5)

and the number of independent non-H atoms (n) for
each P1 structure.

6.3. Comparison of methods

A comparison of success rate and cost effectiveness
for the traditional cosine minimal function using the
optimal shift size with the results for the exponential
minimal function using optimal parameters is presented
in Table 6 for ®ve P1 structures. It should be pointed out
that the experimental data set for triclinic vancomycin
(80.2% completeness at 0.97 AÊ ) has been replaced with
the error-free calculated data set (100% completeness at
0.97 AÊ ) due to the very low success rate obtained when
this data set is incomplete. These data show that using
the exponential minimal function with optimal param-
eters given by equations (32)±(34) leads to signi®cant
improvements in both the success rate and cost effec-
tiveness of the Shake-and-Bake procedure (with the
minor exception of emerimycin, for which the default
double 90� shift with the cosine minimal function is most
cost effective).

A similar comparison of results for six non-P1
structures is presented in Table 7. In this case, the results
are inconsistent. It appears that the exponential minimal

Table 4. Success rates (%) of the cosine minimal function

An asterisk (*) indicates the optimal single-shift size for each structure.

Default
Cosine single parameter-shift size COS(S, 1, 1)

Structure PS(90�, 2) 22.5� 45.0� 67.5� 90.0� 112.5� 135.0� 157.5� 180.0�

Emerimycin 63.1 2.9 38.1 58.0 61.6* 42.2 21.7 6.7 2.2
Isoleucinomycin 10.4 0.0 1.2 6.2 9.9 10.2* 6.0 4.8 1.9
Enkephalin analog 43.0 0.1 14.1 35.1 35.7* 24.4 8.8 2.7 0.5
Ternatin 0.9 0.0 0.0 0.2 1.0 1.0* 0.1 0.5 0.0
Hexaisoleucinomycin 2.6 0.0 0.2 0.8 2.4 2.7* 1.7 1.0 0.4
Gramicidin A 1.0 0.0 0.0 0.2 1.6 2.2* 1.5 0.4 0.0
Crambin 4.8 0.0 1.0 4.4 4.2 5.2* 4.4 1.0 1.4
Triclinic vancomycin 0.05 0.0 0.0 0.10 0.05 0.25* 0.10 0.0 0.0
Alpha-1 peptide 13.7 0.0 0.0 2.8 15.8 19.8* 8.7 3.3 0.2
Scorpion toxin II 1.6 0.0 0.0 0.6 1.0 0.0 1.0* 0.4 0.0
Triclinic lysozyme 0.0 0.0 0.6 0.2 0.0 0.0 0.8 13.5* 1.6

Table 5. Success rates (%) of the exponential minimal function for the P1 test structures

An asterisk (*) indicates the optimal parameter-shift size.

Shift size Emerimycin Enkephalin analog Alpha-1 peptide Triclinic lysozyme
(S) (�) (� = ÿ5.0) (� = ÿ6.0) (� = ÿ6.0) (� = ÿ10.0)

90 80.4 80.4 16.2 0.0
100 88.3 82.8 17.2 0.0
110 90.0 86.0 23.6 0.0
120 92.4* 90.1* 36.2 0.0
130 89.8 89.5 39.4 0.0
140 85.9 83.0 45.4 0.0
150 79.4 76.7 45.8* 0.0
160 68.7 67.3 40.6 0.0
170 50.3 41.0 24.2 40.2*
180 26.4 12.9 6.4 4.2
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function parameters given by equations (32)±(34) are
not optimal for P21 and P212121 structures.

6.4. Implications of the results

Structures in space group P1 exhibit behavior that, in
many respects, differs from that of structures crystal-
lizing in other space groups. As shown by the results in
Tables 5 and 6, the success rate and cost effectiveness of
structures in space group P1 are unexpectedly high for
both minimal functions. Although no rigorous explana-
tion can be given to explain this observation, it can be
argued heuristically that, since it is only in this space
group that all origins are permissible, it is most likely
that an arbitrarily chosen trial structure will have the
correct relative positions for several atoms (for some
choice of origin) if the space group is P1. This obser-
vation then raises the question of whether or not it
would be better to treat all structures as if they were P1
structures. To answer this, both minimal functions were
applied to the 84-atom isoleucinomycin (P212121) and
327-atom crambin (P21) structures, treating them as if
the space group were P1. This required a fourfold
increase in computational effort for isoleucinomycin,
but only a twofold increase was required for crambin.
Success rates and cost effectiveness in P1 and in the
actual space groups are compared in Table 8. For
isoleucinomycin, the best success rate is obtained when

the exponential minimal function is applied in space
group P1; however, the optimum cost effectiveness is
obtained when the exponential minimal function is
applied in space group P212121. For crambin, the best
success rate and cost effectiveness are both obtained
when the exponential minimal function is applied in the
space group P1.

In their implementation of iterative peak list optimi-
zation, a procedure that is closely related to Shake-and-
Bake and uses additional criteria for peak selection but
employs only tangent-formula (Karle & Hauptman,
1956) phase re®nement, Sheldrick & Gould (1995) have
found it advantageous to treat all structures in space
group P1. Since these authors also use a substructure
model to provide starting coordinates when the struc-
ture contains a relatively rigid fragment, working in P1 is
particularly advantageous since only a rotational search
is required. In all other space groups, both rotational
and translational searches are necessary.

7. Conclusions

In view of the experiments described above, it is
recommended that single-shift Exponential Shake-and-
Bake, with parameters �, � and S de®ned by equations
(32)±(34), be used for structures in space group P1.
Optimal values of the parameters �, � and S are not yet

Table 6. Comparison of success rates and cost effectiveness for cosine and exponential minimal functions for P1
structures using optimal parameters for a single shift

An asterisk (*) indicates the best result.

Success rate (%) Cost effectiveness (solutions hÿ1)

P1 structure PS(90�, 2) COS EXP PS(90�, 2) COS EXP

Emerimycin 63.1 61.6 92.4* 618.4* 494.8 600.7
Enkephalin analog 43.0 35.7 90.1* 172.3 105.8 209.7*
Alpha-1 peptide 13.7 19.8 45.8* 0.96 0.94 2.21*
Triclinic lysozyme 0.0 13.5 40.2* 0.0 0.14 0.39*
Triclinic vancomycin 1.8 14.4 41.6* 0.23 0.88 2.35*

(calculated data set)

Table 7. Comparison of success rates and cost effectiveness for cosine and exponential minimal functions for P21 and
P212121 structures

Default exponential-function parameters were determined using equations (32)±(34). An asterisk (*) indicates the best results for the three
computational procedures. The numbers in parentheses indicate the best possible results for the exponential function, not necessarily restricting
the parameters to the values given by equations (32)±(34).

Success rate (%) Cost effectiveness (solutions hÿ1)

P1 structure PS (90�, 2) COS EXP PS (90�, 2) COS EXP

Isoleucinomycin 10.4 10.2 16.3* (24.3) 20.8 18.8 33.9* (41.7)
Ternatin 0.9 1.0* 0.0 (1.2) 1.08 1.16* 0.0 (1.23)
Hexaisoleucinomycin 2.6 2.7* 0.0 (6.0) 1.44 1.45* 0.0 (3.14)
Gramicidin A 1.0 2.2 3.2* (6.6) 0.11 0.19 0.26* (0.54)
Crambin 4.8 5.2 5.6* (7.4) 0.78 0.82 0.92* (1.10)
Scorpion toxin II 1.6* 1.0 0.0 (2.2) 0.036* 0.018 0.0 (0.044)
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known for space groups with higher symmetry.
However, even for other space groups, Exponential
Shake-and-Bake has the potential to outperform Shake-
and-Bake with the default double 90� shift as imple-
mented in an earlier version of SnB (i.e. v1.5) (Miller et
al., 1994). It seems clear that the radius of convergence
of the exponential minimal function is larger than that of
the cosine minimal function. Preliminary experiments,
using truncated data for the alpha-1 structure at 1.1 AÊ ,
indicate that the exponential function does not signi®-
cantly alter the lower-resolution limit for Shake-and-
Bake applications.

The precise reason for the high success rate in space
group P1 obtained with Exponential Shake-and-Bake
remains unknown. It appears that the parameter-shift
size S is a critical parameter for very large P1 structures.
For instance, the success rate for triclinic lysozyme
obtained with the exponential minimal function varies
from 0.0 to 40.0% when the parameter-shift size S
changes by only 10�. This observation suggests that the
range of parameter-shift values yielding signi®cant
success rates may decrease rapidly as the number of
non-H atoms in the unit cell increases. Therefore, it may
be advisable to vary the shift angle for large structures
using a relatively ®ne grid in order to avoid missing
solutions altogether.

The applications of the exponential minimal function
to structures in space groups P21 and P212121 are
complicated by the problem of predicting good par-
ameter values. Nevertheless, the results presented in
Table 8 indicate that structures in space group P21 can
be ef®ciently treated as if they were P21 structures, by
employing the exponential minimal function with
default parameters given by equations (32)±(34).
Treating P212121 structures in space group P1 will
improve the success rate but, due to the fourfold
increase in computational effort, the computational
ef®ciency will be reduced.
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